On non-abelian higher special elements of p-adic representations

نویسندگان

چکیده

We develop a theory of ‘non-abelian higher special elements’ in the non-commutative exterior powers Galois cohomology p-adic representations. explore their relation to organising matrices and thus module structure Selmer modules. In concrete applications, we relate our general formulation refined conjectures Birch Swinnerton-Dyer type Tate–Shafarevich groups abelian varieties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On special representations of p–adic reductive groups

Let F be a non-Archimedean locally compact field, let G be a split connected reductive group over F . For a parabolic subgroup Q ⊂ G and a ring L we consider the G-representation on the L-module (∗) C∞(G/Q, L)/ ∑

متن کامل

Essays on representations of p-adic groups Smooth representations

A smooth G module over R is a representation (π, V ) of G on an R-module V such that each v in V is fixed by an open subgroup of G. A smooth representation (π, V ) is said to be admissible if for each open subgroupK in G the subspace V K of vectors fixed by elements of K is finitely generated overR. UsuallyRwill be a field (necessarily of characteristic 0) in which case this means just that V K...

متن کامل

Analytic Variation of p-adic Abelian Integrals

In Ann. of Math. 121 (1985), 111^168, Coleman de¢nes p-adic Abelian integrals on curves. Given a family of curves X/S, a differential o and two sections s and t, one can de¢ne a function lo on S by lo…P† ˆ R t…P† s…P† oP. In this paper, we prove that lo is locally analytic on S. Mathematics Subject Classi¢cations (2000). Primary 14G20; Secondary 14D10, 11G20. Key words. p-adic Abelian integrals...

متن کامل

Pacific Journal of Mathematics on Representations of P-adic Gl 2 (d) on Representations of P-adic Gl 2 (d)

This paper is in two parts. In the first we work out the asymptotics of functions in the Kirillov model of an irreducible admissible representation of GL 2 (D) for a p-adic division al-gbera D. In the second part we prove a theorem, for GL n (H) for a quaternionic p-adic division algebra H, of explicitly realizing the contragredient representation and then derive a consequence of this for disti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2022

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-022-2296-4